z-logo
Premium
pFARs, Plasmids free of antibiotic resistance markers, display high‐level transgene expression in muscle, skin and tumour cells
Author(s) -
Marie Corinne,
Vandermeulen Gaëlle,
Quiviger Mickaël,
Richard Magali,
Préat Véronique,
Scherman Daniel
Publication year - 2010
Publication title -
the journal of gene medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.689
H-Index - 91
eISSN - 1521-2254
pISSN - 1099-498X
DOI - 10.1002/jgm.1441
Subject(s) - plasmid , transgene , biology , antibiotics , antibiotic resistance , microbiology and biotechnology , gene , genetics
Background Nonviral gene therapy requires a high yield and a low cost production of eukaryotic expression vectors that meet defined criteria such as biosafety and quality of pharmaceutical grade. To fulfil these objectives, we designed a novel antibiotic‐free selection system. Methods The proposed strategy relies on the suppression of a chromosomal amber mutation by a plasmid‐borne function. We first introduced a nonsense mutation into the essential Escherichia coli thyA gene, resulting in thymidine auxotrophy. The bacterial strain was optimized for the production of small and novel plasmids free of antibiotic resistance markers (pFARs) and encoding an amber suppressor t‐RNA. Finally, the potentiality of pFARs as eukaryotic expression vectors was assessed by monitoring luciferase activities after electrotransfer of LUC‐encoding plasmids into various tissues. Results The introduction of pFARs into the optimized bacterial strain restored normal growth to the auxotrophic mutant and allowed an efficient production of monomeric supercoiled plasmids. The electrotransfer of LUC‐encoding pFAR into muscle led to high luciferase activities, demonstrating an efficient gene delivery. In transplanted tumours, transgene expression levels were superior after electrotransfer of the pFAR derivative compared to a plasmid carrying a kanamycin resistance gene. Finally, in skin, whereas luciferase activities decreased within 3 weeks after intradermal electrotransfer of a conventional expression vector, sustained luciferase expression was observed with the pFAR plasmid. Conclusions Thus, we have designed a novel strategy for the efficient production of biosafe plasmids and demonstrated their potentiality for nonviral gene delivery and high‐level transgene expression in several tissues. Copyright © 2010 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here