z-logo
Premium
The role of mechanical forces on the patterning of the avian feather‐bearing skin: A biomechanical analysis of the integumentary musculature in birds
Author(s) -
Homberger Dominique G.,
de Silva Kumudini N.
Publication year - 2003
Publication title -
journal of experimental zoology part b: molecular and developmental evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.823
H-Index - 63
eISSN - 1552-5015
pISSN - 1552-5007
DOI - 10.1002/jez.b.30
Subject(s) - integumentary system , feather , biology , anatomy , wing , zoology , structural engineering , engineering
The integumentary musculature of birds consists of three distinct components. The smooth musculature comprises feather and apterial muscles, which form a continuous musculo‐elastic layer within the dermis. The feather muscles, which consistently include at least erectors and depressors, interconnect contour feathers within pterylae (i.e., feather tracts) along gridlines that are oriented diagonally to the longitudinal and transverse axes of the body. The apterial muscles interconnect pterylae by attaching to the contour feathers along their peripheries. The striated musculature is composed of individual subcutaneous muscles, most of which attach to contour feathers along the caudal periphery of pterylae A new integrative functional analysis of the integumentary musculature proposes how apterial muscles stabilize the pterylae and modulate the tension of the musculo‐elastic layer, and how subcutaneous muscles provide the initial stimulus for erector muscles being able to ruffle the contour feathers within pterylae. It also shows how the arrangement of the contour feathers and integumentary muscles reflects the stresses and strains that act on the avian skin. These mechanical forces are in effect not only in the adult, especially during flight, but may also be active during feather morphogenesis. The avian integument with its complex structural organization may, therefore, represent an excellent model for analyzing the nature of interactions between the environment and genetic material. The predictions of our model are testable, and our study demonstrates the relevance of integrated analyses of complex organs as mechanically coherent systems for evolutionary and developmental biology. J. Exp. Zool. (Mol. Dev. Evol.) 298B:123–139, 2003. © 2003 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here