z-logo
Premium
Segmentation pattern of zebrafish caudal fin is affected by developmental temperature and defined by multiple fusions between segments
Author(s) -
Christou Maria,
Iliopoulou Maria,
Witten Paul Eckhard,
Koumoundouros George
Publication year - 2018
Publication title -
journal of experimental zoology part b: molecular and developmental evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.823
H-Index - 63
eISSN - 1552-5015
pISSN - 1552-5007
DOI - 10.1002/jez.b.22825
Subject(s) - danio , fish fin , juvenile , anatomy , biology , metamorphosis , zebrafish , embryo , ontogeny , fish <actinopterygii> , larva , microbiology and biotechnology , ecology , endocrinology , fishery , biochemistry , gene
Caudal‐fin lepidotrichia is composed of numerous segments, which are linked to each other by intersegmental joints. During fish growth, lepidotrichia elongate by the addition of new segments at their distal margin, whereas the length of each segment remains constant after it is formed. In the present paper, we examined whether the water temperature affects the segmentation pattern of the juvenile and adult caudal fin. For this purpose, zebrafish ( Danio rerio ) embryos and larvae were exposed to three different temperature conditions (24°C, 28°C, and 32°C) from the pharyngula stage (1 day postfertilization [dpf]) to metamorphosis, whereas the control temperature (28°C) was applied to all the groups before and after this period. Results demonstrated that water temperature had a significant effect on the length of the segments of each lepidotrichium, at both the juvenile and adult stages. Moreover, at higher temperatures, there was a significant proximal shift of the position of the first bifurcation of the second lepidotrichium of the dorsal lobe. At all the experimental conditions, the length of proximal segment was not constant during fish growth, but it followed a discontinuous saltatory growth. Histological analysis of the proximal lepidotrichia segments revealed that the observed apparent growth of segments is the result of fusions between segments. Fusion occurs not by mineralization of the intersegmental joints, but by bone deposition around the joints.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here