Premium
Development of the chorioallantoic placenta in Octodon degus —a model for growth processes in caviomorph rodents?
Author(s) -
Mess Andrea
Publication year - 2007
Publication title -
journal of experimental zoology part b: molecular and developmental evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.823
H-Index - 63
eISSN - 1552-5015
pISSN - 1552-5007
DOI - 10.1002/jez.b.21160
Subject(s) - trophoblast , placenta , biology , syncytiotrophoblast , mesenchyme , chorioallantoic membrane , andrology , fetus , microbiology and biotechnology , embryo , genetics , pregnancy , medicine
The degu Octodon degus is one of the very few members of caviomorph or hystricognath Rodentia that possesses a simply arranged chorioallantoic placenta without advanced lobulation. Therefore this species was used as a model to study regional development and growth processes of the placenta, based on the examination of 20 individuals by light and electron microscopy as well as by using markers for proliferation, trophoblast and endometrial stroma. The results were interpreted by comparison with other hystricognaths in the light of their evolutionary history. It was found that trophoblast derived from the trophospongium is essential for extension of the placenta including the labyrinth: extensive proliferation is restricted to trophoblast cells at the outer margin of the placenta and along internally directed, finger‐tip like protrusions of fetal mesenchyme towards the labyrinth. This kind of placental development is regarded as part of the stem species pattern of hystricognaths, evolved more than 40 million years ago. It is indicated for the first time that the replenishment of the syncytiotrophoblast is similar to corresponding processes in the human placenta. In conclusion, the degu is a useful model for placental growth dynamics, particularly because of its simply arranged placental architecture, and may also serve as an animal model in comparison to human pregnancies. J. Exp. Zool. (Mol. Dev. Evol.) 308B:371–383, 2007 . © 2007 Wiley‐Liss, Inc.