Open Access
Assessment of extracellular vesicle isolation methods from human stool supernatant
Author(s) -
NorthropAlbrecht Emmalee J.,
Taylor William R.,
Huang Bing Q.,
Kisiel John B.,
Lucien Fabrice
Publication year - 2022
Publication title -
journal of extracellular vesicles
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.94
H-Index - 68
ISSN - 2001-3078
DOI - 10.1002/jev2.12208
Subject(s) - ultrafiltration (renal) , rna extraction , ultracentrifuge , rna , nanoparticle tracking analysis , isolation (microbiology) , extracellular vesicles , bacteria , chromatography , extraction (chemistry) , extracellular vesicle , biology , protein purification , chemistry , microbiology and biotechnology , population , microvesicles , biochemistry , medicine , gene , microrna , genetics , environmental health
Abstract Extracellular vesicles (EVs) are of growing interest due to their potential diagnostic, disease surveillance, and therapeutic applications. While several studies have evaluated EV isolation methods in various biofluids, there are few if any data on these techniques when applied to stool. The latter is an ideal biospecimen for studying EVs and colorectal cancer (CRC) because the release of tumour markers by luminal exfoliation into stool occurs earlier than vascular invasion. Since EV release is a conserved mechanism, bacteria in stool contribute to the overall EV population. In this study, we assessed five EV separation methods (ultracentrifugation [UC], precipitation [EQ‐O, EQ‐TC], size exclusion chromatography [SEC], and ultrafiltration [UF]) for total recovery, reproducibility, purity, RNA composition, and protein expression in stool supernatant. CD63, TSG101, and ompA proteins were present in EV fractions from all methods except UC. Human (18s) and bacterial (16s) rRNA was detected in stool EV preparations. Enzymatic treatment prior to extraction is necessary to avoid non‐vesicular RNA contamination. Ultrafiltration had the highest recovery, RNA, and protein yield. After assessing purity further, SEC was the isolation method of choice. These findings serve as the groundwork for future studies that use high throughput omics technologies to investigate the potential of stool‐derived EVs as a source for novel biomarkers for early CRC detection.