z-logo
Premium
Effect of different temperatures on the metallographic structure and tensile property of 2024‐T4 alloy in integral heating single point incremental forming
Author(s) -
Zhang Peng,
Li Juan,
Chen Minghe
Publication year - 2020
Publication title -
microscopy research and technique
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.536
H-Index - 118
eISSN - 1097-0029
pISSN - 1059-910X
DOI - 10.1002/jemt.23485
Subject(s) - alloy , ultimate tensile strength , materials science , ductility (earth science) , aluminium , strain rate , metallurgy , composite material , creep
To study the tensile property and metallographic structure evolution of 2024‐T4 high‐strength aluminum alloy in integral heating single point incremental forming (IHSPIF), the warm tensile tests were carried out at 120–240°C with the strain rates of 0.1–0.001 s −1 . Its results could provide a certain theoretical reference to the IHSPIF. The integral heating was different from the local heating, which was to heat the overall sheet to be deformed. It was found in the tensile tests that at the strain rate of 0.01 s −1 , the optimum forming temperature was determined to be 210°C at which the ductility was the best. The material dynamically recovered at 240°C. The following IHSPIF tests were conducted at different temperatures. By observing the organization of the sidewall of the square tapered parts, the alloy dynamically recovered appeared at 210°C and its grains coarsened at 240°C. Considering the temperature interval of 30 and below the recrystallizing temperature of aluminum alloy, it was concluded that the optimal temperature for the integral heating IHSPIF was about 150°C.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here