Premium
Effects of the presence of probiotic bacteria in the aging medium on the surface roughness and chemical composition of two dental alloys
Author(s) -
Musa Trolic Ines,
Todoric Zrinka,
Pop Acev Darko,
Makreski Petre,
Pejova Biljana,
Spalj Stjepan
Publication year - 2019
Publication title -
microscopy research and technique
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.536
H-Index - 118
eISSN - 1097-0029
pISSN - 1059-910X
DOI - 10.1002/jemt.23290
Subject(s) - nickel titanium , surface roughness , probiotic , bacteria , materials science , saliva , alloy , coating , nitride , surface finish , chemistry , metallurgy , chemical engineering , composite material , shape memory alloy , biochemistry , biology , layer (electronics) , genetics , engineering
The aims of this study were: (a) to determine if the presence of probiotic bacteria in an aging medium, that is, artificial saliva in this study, has relevant effects on the surface roughness and the chemical composition of two main alloys used in dentistry (NiTi and stainless steel [SS]) and (b) in the case of NiTi, if these effects are influenced by the coating of the alloy (rhodium and titanium nitride). Atomic force microscopy and Raman spectroscopy were used to study the surface morphology and identify metal oxides formed on the surface of the alloys. Experiments demonstrated that the probiotic bacteria Lactobacillus reuteri can induce processes that alter some features of the surface such as roughness and chemical composition. The effect is dependent on the type of alloy and coating. The bacteria increased roughness in the case of uncoated NiTi more than saliva alone (pH = 4.8). Probiotic bacteria tend to decrease the corrosive influence of saliva on NiTi when the alloy is coated with rhodium or titanium nitride and this effect was also evidenced on SS. Raman spectroscopy confirmed that only SS samples are prone to oxidation processes, predominantly associated with exposure to saliva rather than probiotic bacteria.