Premium
Lungs nodule detection framework from computed tomography images using support vector machine
Author(s) -
Khan Sajid A.,
Nazir Muhammad,
Khan Muhammad A.,
Saba Tanzila,
Javed Kashif,
Rehman Amjad,
Akram Tallha,
Awais Muhammad
Publication year - 2019
Publication title -
microscopy research and technique
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.536
H-Index - 118
eISSN - 1097-0029
pISSN - 1059-910X
DOI - 10.1002/jemt.23275
Subject(s) - computer science , artificial intelligence , preprocessor , support vector machine , medical imaging , pattern recognition (psychology) , segmentation , feature extraction , image processing , computer vision , image (mathematics)
The emergence of cloud infrastructure has the potential to provide significant benefits in a variety of areas in the medical imaging field. The driving force behind the extensive use of cloud infrastructure for medical image processing is the exponential increase in the size of computed tomography (CT) and magnetic resonance imaging (MRI) data. The size of a single CT/MRI image has increased manifold since the inception of these imagery techniques. This demand for the introduction of effective and efficient frameworks for extracting relevant and most suitable information (features) from these sizeable images. As early detection of lungs cancer can significantly increase the chances of survival of a lung scanner patient, an effective and efficient nodule detection system can play a vital role. In this article, we have proposed a novel classification framework for lungs nodule classification with less false positive rates (FPRs), high accuracy, sensitivity rate, less computationally expensive and uses a small set of features while preserving edge and texture information. The proposed framework comprises multiple phases that include image contrast enhancement, segmentation, feature extraction, followed by an employment of these features for training and testing of a selected classifier. Image preprocessing and feature selection being the primary steps—playing their vital role in achieving improved classification accuracy. We have empirically tested the efficacy of our technique by utilizing the well‐known Lungs Image Consortium Database dataset. The results prove that the technique is highly effective for reducing FPRs with an impressive sensitivity rate of 97.45%.