Premium
Scar formation in mice deafened with kanamycin and furosemide
Author(s) -
Żak Magdalena,
van der Linden Cynthia A.,
Bezdjian Aren,
Hendriksen Ferry G.,
Klis Sjaak F.L.,
Grolman Wilko
Publication year - 2016
Publication title -
microscopy research and technique
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.536
H-Index - 118
eISSN - 1097-0029
pISSN - 1059-910X
DOI - 10.1002/jemt.22695
Subject(s) - scars , hair cell , cochlea , kanamycin , regeneration (biology) , epithelium , anatomy , sensorineural hearing loss , chemistry , hearing loss , pathology , biology , microbiology and biotechnology , medicine , audiology , biochemistry , gene
In mammals, hair cell loss is irreversible and leads to hearing loss. To develop and test the functioning of different strategies aiming at hair cell regeneration, animal models of sensorineural hearing loss are essential. Although cochleae of these animals should lack hair cells, supporting cells should be preserved forming an environment for the regenerated hair cells. In this study, we investigated how ototoxic treatment with kanamycin and furosemide changes the structure of cochlear sensory epithelium in mice. The study also compared different tissue preparation protocols for scanning electron microscopy (SEM). Cochleae were collected from deafened and nondeafened mice and further processed for plastic mid modiolar sections and SEM. For comparing SEM protocols, cochleae from nondeafened mice were processed using three protocols: osmium–thiocarbohydrazide–osmium (OTO), tannic acid–arginine–osmium, and the conventional method with gold‐coating. The OTO method demonstrated optimal cochlear tissue preservation. Histological investigation of cochleae of deafened mice revealed that the supporting cells enlarged and ultimately replaced the lost hair cells forming types 1 and 2 phalangeal scars in a base towards apex gradient. The type 3 epithelial scar, flattened epithelium, has not been seen in analysed cochleae. The study concluded that mice deafened with kanamycin and furosemide formed scars containing supporting cells, which renders this mouse model suitable for testing various hair cell regeneration approaches. Microsc. Res. Tech. 79:766–772, 2016 . © 2016 Wiley Periodicals, Inc.