z-logo
Premium
Tract‐tracing study of the extrabulbar Olfactory projections in the brain of some teleosts
Author(s) -
D'aniello Biagio,
Luongo Luciano,
Rastogi Rakesh K.,
Di Meglio Maria,
Pinelli Claudia
Publication year - 2015
Publication title -
microscopy research and technique
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.536
H-Index - 118
eISSN - 1097-0029
pISSN - 1059-910X
DOI - 10.1002/jemt.22471
Subject(s) - olfactory bulb , olfactory system , biology , anatomy , fmrfamide , olfactory nerve , neuroanatomy , anterograde tracing , anterior olfactory nucleus , olfactory mucosa , olfaction , olfactory epithelium , central nervous system , neuroscience , neuropeptide , receptor , olfactory tubercle , biochemistry
The extrabulbar olfactory projections (EBOP) is a collection of nerve fibers that originate from primary olfactory receptor neurons. These fibers penetrate into the brain, bypassing the olfactory bulbs (OBs). While the presence of an EBOP has been well established in teleosts, here we morphologically characterize the EBOP structure in four species each with a different morphological relationship of OB with the ventral telencephalic area. Tract‐tracing methods (carbocyanine DiI/DIA and biocytin) were used. FMRFamide immunoreactive nervus terminalis (NT) components were also visualized to define any neuroanatomical relationship between the NT and EBOP. Unilateral DiI/DiA application to the olfactory chamber stained the entire olfactory epithelium, olfactory nerve fibers, and ipsilateral olfactory bulb. Labeled primary olfactory fibers running ventromedially as extrabulbar primary olfactory projections reached various regions of the secondary prosencephalon. Only in Moenkhausia sanctaefilomenae (no olfactory peduncle) did lipophilic tracer‐labeled fibers reach the ipsilateral mesencephalon. The combination of tracing techniques and FMRFamide immunohistochemistry revealed a substantial overlap of the label along the olfactory pathways as well as in the anterior secondary prosencephalon. However, FMRFamide immunoreactivity was never colocalized in the same cellular or fiber component as visualized using tracer molecules. Our results showed a certain uniformity in the neuroanatomy and extension of EBOP in all four species, independent of the pedunculate feature of the OBs. The present study also provided additional evidence to support the view that EBOP and FMRFamide immunoreactive components of the NT are separate anatomical entities. Microsc. Res. Tech. 78:268–276, 2015 . © 2015 Wiley Periodicals, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here