Premium
Effects of chemical agents on physical properties and structure of primary pulp chamber dentin
Author(s) -
Miori Pascon Fernanda,
Rosamilia Kantovitz Kamila,
Franciele Gaspar Juliana,
Paula Andreia Bolzan,
PuppinRontani Regina Maria
Publication year - 2014
Publication title -
microscopy research and technique
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.536
H-Index - 118
eISSN - 1097-0029
pISSN - 1059-910X
DOI - 10.1002/jemt.22312
Subject(s) - dentin , indentation hardness , sodium hypochlorite , pulp (tooth) , dentistry , chemistry , scanning electron microscope , surface roughness , nuclear chemistry , materials science , composite material , microstructure , medicine , organic chemistry
This study evaluated the effects of chemical agents on the physical properties and structure of primary pulp chamber dentin using surface roughness, microhardness tests, and scanning electron microscopy (SEM). Twenty‐five primary teeth were sectioned exposing the pulp chamber and were divided into five groups ( n = 5): NT, no treatment; SH1, 1% sodium hypochlorite (NaOCl); SH1U, 1% NaOCl + Endo‐PTC ® ; SH1E, 1% NaOCl + 17% EDTA; and E, 17% EDTA. After dentin treatment, the specimens were submitted to roughness, microhardness testing, and SEM analysis. Roughness and microhardness data were submitted to one‐way ANOVA and Tukey's test ( P < 0.05). The SH1E group showed the highest roughness, followed by the E group ( P < 0.05) when compared with the NT, SH1, and SH1U groups. Microhardness values of SH1 and SH1U showed no significant difference as compared to the NT (control) group ( P > 0.05). Microhardness values could not be obtained in the EDTA groups (SH1E and E). The presence of intertubular dentin with opened dentin tubules was observed in the NT, SH1, and SH1U groups. SH1E showed eroded and disorganized dentin with few opened tubules and the intertubular/peritubular dentin was partially removed. Considering the physical and structural approaches and the chemical agents studied, it can be concluded that NaOCl and NaOCl associated with Endo‐PTC ® were the agents that promoted the smallest changes in surface roughness, microhardness, and structure of the pulp chamber dentin of primary teeth. Microsc. Res. Tech. 77:52–56, 2014 . © 2013 Wiley Periodicals, Inc.