Premium
Parallel deconvolution of large 3D images obtained by confocal laser scanning microscopy
Author(s) -
Pawliczek Piotr,
RomanowskaPawliczek Anna,
Soltys Zbigniew
Publication year - 2010
Publication title -
microscopy research and technique
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.536
H-Index - 118
eISSN - 1097-0029
pISSN - 1059-910X
DOI - 10.1002/jemt.20773
Subject(s) - deconvolution , computer science , blind deconvolution , computation , confocal , computer vision , microscopy , algorithm , image processing , dimension (graph theory) , artificial intelligence , optics , image (mathematics) , physics , mathematics , pure mathematics
Various deconvolution algorithms are often used for restoration of digital images. Image deconvolution is especially needed for the correction of three‐dimensional images obtained by confocal laser scanning microscopy. Such images suffer from distortions, particularly in the Z dimension. As a result, reliable automatic segmentation of these images may be difficult or even impossible. Effective deconvolution algorithms are memory‐intensive and time‐consuming. In this work, we propose a parallel version of the well‐known Richardson–Lucy deconvolution algorithm developed for a system with distributed memory and implemented with the use of Message Passing Interface (MPI). It enables significantly more rapid deconvolution of two‐dimensional and three‐dimensional images by efficiently splitting the computation across multiple computers. The implementation of this algorithm can be used on professional clusters provided by computing centers as well as on simple networks of ordinary PC machines. Microsc. Res. Tech., 2010. © 2009 Wiley‐Liss, Inc.