z-logo
Premium
Gender‐related changes in the avian vasotocin system during ontogeny
Author(s) -
Jurkevich Aleksandr,
Grossmann Roland,
Balthazart Jacques,
VigliettiPanzica Carla
Publication year - 2001
Publication title -
microscopy research and technique
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.536
H-Index - 118
eISSN - 1097-0029
pISSN - 1059-910X
DOI - 10.1002/jemt.1153
Subject(s) - sexual dimorphism , ontogeny , biology , vasotocin , sexual differentiation , quail , stria terminalis , parvocellular cell , sexual maturity , preoptic area , medicine , endocrinology , testosterone (patch) , anatomy , hormone , central nervous system , neuropeptide , biochemistry , receptor , gene
The arginine vasotocin (AVT) system of the avian brain includes a sexually dimorphic part that extends from the caudal part of preoptic region through the medial part of the bed nucleus of stria terminalis (BSTm) to the lateral septum. It is composed of the parvocellular neurons located in the BSTm and the dense innervation of the medial preoptic region and lateral septum. In this part of the brain, AVT expression is stronger in males than in females in a few bird species investigated to date. This review focuses on the ontogeny of sexual differences in the vasotocinergic system of two gallinaceous species, domestic chicken and Japanese quail, and on the role of gonadal hormones in organizing during development and maintaining in adulthood these differences. Parvocellular AVT neurons become discernible in the BSTm of males and females during the second half of embryonic development. These cells undergo a profound and irreversible sexual differentiation during ontogenetic development. Recent findings demonstrate a dual role of estrogens in the organization and activation of sex differences in the AVT system. During the embryonic period of ontogeny, estrogens differentiate the AVT system in a sexually dimorphic manner in parallel with the differentiation of sexual behavior, while in adulthood estrogens, locally produced from testosterone in the male brain, activate AVT synthesis in the BSTm. The sexually dimorphic part of the AVT system is sensitive to a number of abiotic factors such as light, temperature, and water availability. It is suggested that sex dimorphic vasotocinergic systems could be implicated in processes of social recognition in various behavioral contexts. Microsc. Res. Tech. 55:27–36, 2001. © 2001 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here