z-logo
Premium
Myoblast transfer and gene therapy in muscular dystrophies
Author(s) -
Pagel Charles Neil,
Morgan Jennifer Elizabeth
Publication year - 1995
Publication title -
microscopy research and technique
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.536
H-Index - 118
eISSN - 1097-0029
pISSN - 1059-910X
DOI - 10.1002/jemt.1070300604
Subject(s) - gene transfer , myocyte , genetic enhancement , muscular dystrophy , medicine , gene , biology , genetics
Myoblast transfer therapy and gene therapy have both been proposed as potential treatments for inherited myopathies, such as Duchenne muscular dystrophy (DMD). The success of myoblast implantation in mouse models, where problems such as immune rejection are easily overcome, have led to similar experiments being attempted on Duchenne patients with limited, if any, success. Gene therapy, either by viral vectors or direct injection of the plasmid, has also had some success in animal models. Although both techniques, either separately or in combination, show some promise for the treatment of DMD, there are still many issues to be investigated in animal models, including the following: What is the best source of muscle precursor cells (mpc), and how may sufficient cells be obtained? What is the best vehicle for gene therapy? How far from the injection site can an implanted cell or gene have an effect? How can immune rejection of the injected cells or introduced protein be overcome? Does the introduced dystrophin lead to improved muscle function? Can cardiac muscle can be successfully treated by gene therapy? Can skeletal muscle which has undergone a great deal of damage be improved by either cell or gene therapy? © 1995 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here