Premium
Actin machinery of phagocytic cells: Universal target for bacterial attack
Author(s) -
Belyi Iouri F.
Publication year - 2002
Publication title -
microscopy research and technique
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.536
H-Index - 118
eISSN - 1097-0029
pISSN - 1059-910X
DOI - 10.1002/jemt.10097
Subject(s) - microbiology and biotechnology , intracellular , actin , cytoplasm , biology , actin cytoskeleton , effector , cytoskeleton , extracellular , cell , biochemistry
Uptake of microorganisms by eukaryotic cells depends on proper functioning of the actin machinery. It creates a driving force for the cell membrane deformations necessary for ingestion and killing of microbes by phagocytes. Therefore, specific alterations in the activity of the actin apparatus could be favorable for pathogenic bacteria, representing an efficient mechanism in their virulence. Such alterations are supposed to be achieved in two principle ways. One is accomplished via binding of bacterial ligands to certain surface receptors, which initiate subsequent actin cytoskeleton rearrangements. Another is to introduce cytoskeleton‐targeted products directly into eukaryotic cells and in this way modulate the activity of the actin apparatus. Indeed, Legionella and some other intracellular parasites possess ligands able to stimulate certain receptors on the surface of phagocytes and possess devices suitable for translocation of effector molecules into eukaryotic cytoplasm. The results of such events could be increased uptake of these microbes and their subsequent transportation to permit multiplication in their intracellular niche. On the contrary, representatives of Clostridium and a number of other extracellular pathogens create products which penetrate eukaryotic cells and disorganize the actin cytoskeleton network, thus making uptake of these pathogens by phagocytes impossible. Microsc. Res. Tech. 57:432–440, 2002. © 2002 Wiley‐Liss, Inc.