z-logo
Premium
Adrenomedullin has multiple roles in disease stress: Development and remission of the inflammatory response
Author(s) -
Elsasser Ted H.,
Kahl Stas
Publication year - 2002
Publication title -
microscopy research and technique
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.536
H-Index - 118
eISSN - 1097-0029
pISSN - 1059-910X
DOI - 10.1002/jemt.10058
Subject(s) - inflammation , adrenomedullin , immune system , immunology , sepsis , subclinical infection , downregulation and upregulation , disease , medicine , hormone , homeostasis , systemic inflammatory response syndrome , effector , systemic inflammation , biology , receptor , biochemistry , gene
The upregulation of adrenomedullin (AM) gene expression and increases in systemic circulatory as well as localized tissue AM concentrations is well coordinated with the onset and progression of trauma, infection, and sepsis. As such, the coordinated change in AM suggests a key role for this peptide in the inflammatory response. By clinical definition, the process of inflammation constitutes an orchestrated cascade of localized tissue and systemic responses to immunological challenges. Classical responses to the onset of disease stresses are manifested in the timely elaboration of humoral, blood‐borne signal effectors (such as adrenocortical and locally produced tissue hormones, immune cytokines, and inorganic signals such as nitric oxide) as well as patterned migration and infiltration of circulating bone marrow‐derived cells (mononuclear cells such as monocyte‐macrophages and polymorphonuclear cells like neutrophils) largely associated with or delivered through the vascular system. The body's attempts to combat acute infection to restore homeostatic equilibrium are further compromised by underlying disease situations. Atherosclerosis, diabetes, and cardiovascular disease, as well as nutritional metabolic derangements and persistent subclinical infection perturb the regulatory feedback loops necessary for proper control of response effectors like hormones and cytokines. When imbalances occur, tissue necrosis can ensue as driven by free radical damage to cell components. A true appreciation of the inflammatory response can only be grasped through an integrative approach in which the relationship between the different physiological systems is viewed in terms of a changing, dynamic interaction. In essence, the inflammatory response can be thought of in three phases: a period of severity assessment, a period of remediation, and a period of homeostatic restoration. Indeed, AM has differential effects on cellular metabolism, immune function, endocrine function, and cardiovascular function. This peptide appears to play a pivotal role in both reprioritizing the biological needs of tissues and organs during the three phases of inflammatory response as well as a role in restoring homeostatic equilibrium to the body. Microsc. Res. Tech. 57:120–129, 2002. Published 2002 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here