Premium
Randomization tests as alternative analysis methods for behavior‐analytic data
Author(s) -
Craig Andrew R.,
Fisher Wayne W.
Publication year - 2019
Publication title -
journal of the experimental analysis of behavior
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.75
H-Index - 61
eISSN - 1938-3711
pISSN - 0022-5002
DOI - 10.1002/jeab.500
Subject(s) - randomization , computer science , nonparametric statistics , parametric statistics , restricted randomization , statistical hypothesis testing , data mining , statistics , econometrics , machine learning , data science , mathematics , randomized controlled trial , medicine , surgery
Randomization statistics offer alternatives to many of the statistical methods commonly used in behavior analysis and the psychological sciences, more generally. These methods are more flexible than conventional parametric and nonparametric statistical techniques in that they make no assumptions about the underlying distribution of outcome variables, are relatively robust when applied to small ‐n data sets, and are generally applicable to between‐groups, within‐subjects, mixed, and single‐case research designs. In the present article, we first will provide a historical overview of randomization methods. Next, we will discuss the properties of randomization statistics that may make them particularly well suited for analysis of behavior‐analytic data. We will introduce readers to the major assumptions that undergird randomization methods, as well as some practical and computational considerations for their application. Finally, we will demonstrate how randomization statistics may be calculated for mixed and single‐case research designs. Throughout, we will direct readers toward resources that they may find useful in developing randomization tests for their own data.