z-logo
Premium
Emergent identity but not symmetry following successive olfactory discrimination training in rats
Author(s) -
Prichard Ashley,
PanozBrown Danielle,
Bruce Katherine,
Galizio Mark
Publication year - 2015
Publication title -
journal of the experimental analysis of behavior
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.75
H-Index - 61
eISSN - 1938-3711
pISSN - 0022-5002
DOI - 10.1002/jeab.169
Subject(s) - psychology , stimulus (psychology) , discrimination learning , stimulus control , cognitive psychology , reinforcement , identity (music) , audiology , neuroscience , social psychology , medicine , physics , acoustics , nicotine
The search for symmetry in nonhuman subjects has been successful in recent studies in pigeons (e.g., Urcuioli, 2008). The key to these successes has been the use of successive discrimination procedures and combined training on identity, as well as arbitrary, baseline relations. The present study was an effort to extend the findings and theoretical analysis developed by Urcuioli and his colleagues to rats using olfactory rather than visual stimuli. Experiment 1 was a systematic replication of Urcuioli's (2008) demonstration of symmetry in pigeons. Rats were exposed to unreinforced symmetry probes following training with two arbitrary and four identity conditional discriminations. Response rates on symmetry probe trials were low and provided little evidence for emergent symmetry in any of the seven rats tested. In Experiment 2, a separate group of six rats was trained on four identity relations and was then exposed to probe trials with four novel odor stimuli. Response rates were high on identity probe trials, and low on nonmatching probe trials. The similar patterns of responding on baseline and probe trials that were shown by most rats provided a demonstration of generalized identity matching. These findings suggest that the development of stimulus control topographies in rats with olfactory stimuli may differ from those that emerge in pigeons with visual stimuli. Urcuioli's (2008) theory has been highly successful in predicting conditions necessary for stimulus class formation in pigeons, but may not be sufficient to fully understand determinants of emergent behaviors in other nonhuman species.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here