z-logo
Premium
Immobilization of β‐amylase using polyacrylamide polymer derivatives
Author(s) -
Atia KS,
Ismail SA,
Dessouki AM
Publication year - 2003
Publication title -
journal of chemical technology and biotechnology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.64
H-Index - 117
eISSN - 1097-4660
pISSN - 0268-2575
DOI - 10.1002/jctb.875
Subject(s) - glutaraldehyde , covalent bond , acrylamide , chemistry , immobilized enzyme , polymer , amylase , enzyme assay , polyacrylamide , acrylic acid , polymer chemistry , nuclear chemistry , enzyme , chromatography , organic chemistry , copolymer
Barley β‐amlyase was immobilized on two polymeric materials; poly(acrylamide–acrylic acid) resin [P(AM‐AAc)] and poly(acrylamide–acrylic acid–diallylamine–HCl) resin [P(P(AM‐AAc‐DAA‐HCl) using two different methods: covalent and cross‐linking immobilization. Thionyl chloride, used to activate the polymers for covalent immobilization, has the advantage that it is able to react with a number of surface groups of protein under very mild conditions. Cross‐linking with glutaraldehyde gave a higher coupling yield (approximately 70%) than covalent immobilization (approximately 20%). The activity and stability of the resulting biopolymers have been compared with those of free β‐amylase. The specific activity of the immobilized enzyme was significantly influenced by the amount of enzyme loaded onto the polymers, the optimal level being 3.5 mg g −1 polymer. It was found that the immobilized β‐amylase stored at 4°C retained approximately 90% of its original activity after 30 days, whereas free β‐amylase stored in solution at 4°C retained only 47% of its activity after same period. The difference in long term stability was more significant when the enzyme was stored at room temperature; the immobilized enzyme maintained 40% of its activity after 30 days, whereas the residual activity of free enzyme was only 10%. Copyright © 2003 Society of Chemical Industry

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here