z-logo
Premium
Vapor–liquid behavior of phenol and cumene in ternary and quaternary mixtures
Author(s) -
Sprakel Lisette MJ,
Bargeman G,
Sanchez Lara G,
Schuur B
Publication year - 2021
Publication title -
journal of chemical technology and biotechnology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.64
H-Index - 117
eISSN - 1097-4660
pISSN - 0268-2575
DOI - 10.1002/jctb.6704
Subject(s) - cumene , chemistry , relative volatility , volatility (finance) , phenol , ternary operation , solvent , distillation , cyclohexanol , cumene hydroperoxide , impurity , organic chemistry , aqueous solution , inorganic chemistry , catalysis , computer science , financial economics , economics , programming language
BACKGROUND Although phenol is a key intermediate in the plastics and polycarbonate industry, it is also a toxic component that requires removal from dilute aqueous streams, potentially by liquid–liquid extraction (LLX). For LLX, cumene is suggested as a solvent as it is already present in processes in the polycarbonate industry. For the recovery of cumene from phenol by distillation, knowledge on vapor–liquid equilibrium (VLE) behavior is important, in combination with how this is affected by other components possibly present as an impurity or explicitly added as a solvent. This was investigated in this work. RESULTS The binary cumene–phenol system shows a tangent pinch in the binary VLE diagram. Addition of a range of impurities and solvents showed that hydrogen bond accepting compounds strongly improve the relative volatility of the mixture, whereas dodecane, not capable of forming hydrogen bonds, has a negative effect on the relative volatility. CONCLUSION Addition of polar components with hydrogen bonding abilities, i.e. ketones or ethers, affected the relative volatility of cumene over phenol the most positively. Combining two types of components results in similar effects, and clear synergistic effects could not be shown based on current VLE measurements. Addition of an apolar component in combination with polar components with hydrogen abilities had only a minor effect on the relative volatility. © 2021 The Authors. Journal of Chemical Technology and Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry (SCI).

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here