Premium
Co‐immobilization of P450 BM3 and glucose dehydrogenase on different supports for application as a self‐sufficient oxidative biocatalyst
Author(s) -
Solé Jordi,
Caminal Gloria,
Schürmann Martin,
Álvaro Gregorio,
Guillén Marina
Publication year - 2019
Publication title -
journal of chemical technology and biotechnology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.64
H-Index - 117
eISSN - 1097-4660
pISSN - 0268-2575
DOI - 10.1002/jctb.5770
Subject(s) - biocatalysis , agarose , cofactor , chemistry , bacillus megaterium , combinatorial chemistry , immobilized enzyme , aldehyde dehydrogenase , enzyme , organic chemistry , catalysis , biochemistry , biology , bacteria , reaction mechanism , genetics
Abstract BACKGROUND The oxy‐functionalization of non‐activated carbon bonds by the bacterial cytochrome P450 BM3 from Bacillus megaterium , presents a promising field in biosynthesis and it has gained much interest in recent decades. Nevertheless, the need for the expensive cofactor NADPH, together with low operational stability of the enzyme have made the implementation of this biocatalyst unfeasible in most cases for industry. RESULTS P450 BM3 and glucose dehydrogenase (GDH), as a cofactor regeneration enzyme, were successfully co‐immobilized obtaining a bi‐functional self‐sufficient oxidative biocatalyst. First, a broad screening of 13 different supports was carried out. Five selected agaroses with three different functionalities (epoxy, amine and aldehyde) were studied and their immobilization processes optimized. Finally, P450 BM3 and GDH were co‐immobilized on those supports showing the best performance for P450 BM3 immobilization: epoxy‐agarose (epoxy‐agarose‐UAB) presenting 83% and 20% retained activities respectively; AMINO‐agarose presenting 28% and 25%, and Lentikats® with which both enzymes retained 100% of the initial activity. Furthermore, the re‐utilization of the self‐sufficient immobilized derivatives was tested in five repeated cycles. CONCLUSIONS P450 BM3 and GDH have been successfully immobilized on three supports and their re‐usability has been tested in a model reaction. It represents a step forward for future P450 BM3 industrial implementations. © 2018 Society of Chemical Industry