Premium
Sorption of tannic acid on zirconium pillared clay
Author(s) -
Vinod V P,
Anirudhan T S
Publication year - 2002
Publication title -
journal of chemical technology and biotechnology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.64
H-Index - 117
eISSN - 1097-4660
pISSN - 0268-2575
DOI - 10.1002/jctb.530
Subject(s) - adsorption , chemistry , ionic strength , sorption , tannic acid , freundlich equation , diffusion , particle size , langmuir , tannin , zirconium , montmorillonite , inorganic chemistry , nuclear chemistry , organic chemistry , aqueous solution , thermodynamics , physics , food science
Zirconium pillared clay (PILC) was prepared using montmorillonite as the base clay. Adsorption of tannic acid (tannin) was studied by a batch equilibrium technique, as a function of adsorbate concentration, temperature, pH, agitation speed, particle size of the adsorbent and ionic strength. The process of uptake is governed by diffusion controlled first‐order reversible rate kinetics. The higher uptake for the pH range 4.0–6.0 was attributed to external hydrogen bonding between phenolic‐OH groups of tannin molecules and the hydrogen bonding sites on the clay. The removal of tannin by adsorption was found to be >99.0% depending on the initial concentration in the pH range of 4.0–6.0. The process involves both film and pore diffusion to different extents. The effects of solute concentration, temperature, agitation speed and particle size on the diffusion rate were investigated. Tannin uptake was found to increase with ionic strength due to the compression of diffuse double layers. The applicability of Langmuir and Freundlich isotherm models has been tested. The maximum adsorption capacity of PILC was found to be 45.8 µmol g −1 of clay and the affinity constant is 2.9 × 10 −2 dm 3 µmol −1 at 30 °C. Thermodynamic parameters such as Δ G °,Δ H ° and Δ S ° were calculated to predict the nature of adsorption. The isosteric enthalpies of adsorption were also determined and found to decrease with increasing surface coverage. Regeneration with hot water (60 °C) has been investigated for several cycles with a view to recovering the adsorbed tannin and also restoring the sorbent to its original state. Copyright © 2001 Society of Chemical Industry