z-logo
Premium
Evaluation of gas–liquid mass transfer in gas‐induced stirred tank reactor using electrical resistance tomography
Author(s) -
Abdullah Bawadi,
Adesina Adesoji A
Publication year - 2017
Publication title -
journal of chemical technology and biotechnology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.64
H-Index - 117
eISSN - 1097-4660
pISSN - 0268-2575
DOI - 10.1002/jctb.5220
Subject(s) - impeller , mass transfer , continuous stirred tank reactor , entrainment (biomusicology) , mass transfer coefficient , dimensionless quantity , mixing (physics) , bubble , mechanics , chemistry , wet gas , materials science , analytical chemistry (journal) , thermodynamics , chromatography , physics , quantum mechanics , rhythm , acoustics
BACKGROUND A gas‐entrainment impeller is attractive for multiphase reactive systems such as Fischer–Tropsch reaction and deep liquid‐phase oxidation of organics with the possibility of low gas conversion per pass, enhancement of mixing performance and better inter‐phase mass transfer compared with conventional impellers. RESULTS Tomograms obtained from ERT measurement reveal that the conductivity of a gas–water system changes as a function of impeller Reynolds number, Re I . The global gas holdup profile behaviour with Re I exhibited a sigmoid character which was adequately captured by ϵ G  =  ϵ G ,0  +  ϵ G ,max (1 − exp(− τ gl Re I )). The parity plot showed strong linearity between model predicted and experimental data. The radial gas holdup profiles showed an upward parabolic trend with higher gas holdup values for gas‐entrainment impeller systems than the conventional 4‐blade impeller. To assess the efficiency of power consumption, the mass transfer coefficient, k L a , for a gas–liquid system in a stirred tank reactor was correlated as a function of dimensionless combination of power number and gas holdup; k L a = k L a 0 + αP P 0ϵ Gβ where α is the bubble collision frequency (s −1 ) and β is the gas‐inducing enhancement factor. CONCLUSION Three different regimes of volumetric mass transfer coefficient were identified in the stirred tank reactor for each case. Overall, the combination of qualitative and quantitative analyses of ERT along with dissolved oxygen concentration permitted an insightful analysis of the self‐gas inducing impeller as a superior mixing technology for potential industrial applications involving gas–liquid operations. © 2017 Society of Chemical Industry

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here