Premium
Study on the enzymatic hydrolysis of racemic methyl ibuprofen ester
Author(s) -
Madhav M Venu,
Ching C B
Publication year - 2001
Publication title -
journal of chemical technology and biotechnology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.64
H-Index - 117
eISSN - 1097-4660
pISSN - 0268-2575
DOI - 10.1002/jctb.466
Subject(s) - batch reactor , chemistry , hydrolysis , candida rugosa , substrate (aquarium) , aqueous solution , reaction rate , continuous stirred tank reactor , lipase , chromatography , continuous reactor , aqueous two phase system , plug flow reactor model , microreactor , chemical engineering , organic chemistry , catalysis , enzyme , oceanography , geology , engineering
The hydrolysis of racemic methyl ibuprofen ester in the presence of lipase from Candida rugosa was investigated in shake flasks. Experiments were performed to study the effect of temperature, pH and shaking speed on the reaction rate. Different hydrophobic co‐solvents were screened for the highest reaction rate and the presence of enzyme inhibition by substrate and products was examined. A kinetic expression was then proposed to describe the reaction. Kinetic parameters were determined for the optimum operating conditions and the proposed model was verified with the experimental results. Next, this reaction was scaled up to a fed batch stirred tank reactor. Batch reactor and fed batch reactor configurations were compared for better conversions. The effects of aqueous phase hold‐up, substrate concentration and feed flow rate on the conversion of the reaction were also studied. Higher conversions were obtained in a fed batch reactor when compared with the batch reactor. In the fed batch reactor, increased conversions were observed with lower feed flowrates and high aqueous phase hold‐up. © 2001 Society of Chemical Industry