z-logo
Premium
Monoclonal antibody‐targeted polymeric nanoparticles for cancer therapy – future prospects
Author(s) -
Goodall Stephen,
Jones Martina L.,
Mahler Stephen
Publication year - 2015
Publication title -
journal of chemical technology and biotechnology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.64
H-Index - 117
eISSN - 1097-4660
pISSN - 0268-2575
DOI - 10.1002/jctb.4555
Subject(s) - nanomedicine , monoclonal antibody , biodistribution , drug delivery , cancer , targeted drug delivery , medicine , cancer therapy , drug carrier , drug , cancer research , cancer cell , antibody , endocytosis , nanotechnology , nanoparticle , pharmacology , chemistry , materials science , immunology , biochemistry , in vitro , receptor
Although combination therapy for cancer utilising monoclonal antibodies in conjunction with chemotherapeutic drugs has resulted in increases in 5 year survivals, there nevertheless remains significant morbidity and mortality associated with systemic delivery of cytotoxic drugs. The advent of living radical polymerisation has resulted in complex and elegant nanoparticle structures that can be engineered to passively target a drug payload for cancer treatment. This presents a therapeutic modality whereby biodistribution and consequently systemic toxicity can be reduced, while focusing drug delivery to the tumour site. Nanoparticle delivery can be enhanced by attachment of a targeting monoclonal antibody fragment to facilitate tumour cell uptake through endocytosis, and so increase therapeutic efficacy. In this way, monoclonal antibodies can be supercharged by carrying a payload consisting of a cocktail of conventional chemotherapeutic drugs and siRNA . This review will focus on antibody‐targeted polymeric nanoparticles to cancer cells, and methods and technologies for synthesising such antibody‐targeted nanoparticles. The review is confined to polymeric‐based nanoparticles as these offer some advantages over liposomal nanoparticles and may circumvent some of the pitfalls in nanomedicine. Development of these antibody based polymeric nanoparticles and future directions for therapy are highlighted in this review. © 2014 Society of Chemical Industry

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here