z-logo
Premium
Solar photocatalytic oxidation of NO by electronspun TiO 2 / ZnO composite nanofiber mat for enhancing indoor air quality
Author(s) -
Pei Carina Chun,
Leung Wallace WoonFong
Publication year - 2014
Publication title -
journal of chemical technology and biotechnology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.64
H-Index - 117
eISSN - 1097-4660
pISSN - 0268-2575
DOI - 10.1002/jctb.4506
Subject(s) - photocatalysis , materials science , nanofiber , chemical engineering , x ray photoelectron spectroscopy , electrospinning , dopant , nanoparticle , composite number , nanotechnology , catalysis , composite material , doping , chemistry , optoelectronics , organic chemistry , polymer , engineering
BACKGROUND There is a demand to develop nano‐photocatalyst that has better performance than existing TiO 2 nanoparticles, which are difficult to separate and reuse. RESULTS Both TiO 2 and TiO 2 /ZnO composite nanofibers prepared using sol–gel assisted electrospinning provided higher photocatalytic oxidation (PCO) of NO than TiO 2 nanoparticles of 100 nm. The nanopores formed between nano‐crystallites of nanofibers were found to increase both adsorption and activity of the photocatalyst. The TiO 2 /ZnO composite nanofiber photocatalyst has a lower band‐gap than TiO 2 nanofibers, which favors photo‐electron generation, because introduction of ZnO causes charge imbalance and formation of unsaturated chemical bonds on the surface, increasing the catalyst surface oxygen vacancy and generation of the oxidation radicals, thereby increasing PCO. The efficiency of PCO under irradiation containing a full spectrum of wavelengths was optimized by adding 0.10 wt% of Zn to the TiO 2 photocatalyst, and this optimal amount of added dopant was in accord with X‐ray photoelectron spectroscopy measurement. The activity of the nanofiber photocatalysts was improved by increasing the irradiation area and residence time; and optimized at a relative humidity of 50%. CONCLUSION The present study demonstrates that enhanced PCO of NO with photocatalyst nanofiber can be optimized under solar light irradiation. © 2014 Society of Chemical Industry

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here