z-logo
Premium
Use of carbon dioxide as feedstock for chemicals and fuels: homogeneous and heterogeneous catalysis
Author(s) -
Dibenedetto Angela,
Angelini Antonella,
Stufano Paolo
Publication year - 2014
Publication title -
journal of chemical technology and biotechnology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.64
H-Index - 117
eISSN - 1097-4660
pISSN - 0268-2575
DOI - 10.1002/jctb.4229
Subject(s) - chemistry , catalysis , raw material , organic chemistry , fossil fuel , phosgene , renewable energy , homogeneous catalysis , carbon dioxide , renewable fuels , electrical engineering , engineering
CO 2 is considered to play a key role in an eventual climate change, due to its accumulation in the atmosphere. The control of its emission represents a challenging task that requires new ideas and new technologies. The use of perennial energy sources and renewable fuels instead of fossil fuels and the conversion of CO 2 into useful products are receiving increased attention. The utilization of CO 2 as a raw material for the synthesis of chemicals and fuels is an area in which scientists and industrialists are much involved: the implementation of such technology on a large scale would allow a change from a linear use of fossil carbon to its cyclic use, mimicking Nature. In this paper the use of CO 2 as building block is discussed. CO 2 can replace toxic species such as phosgene in low energy processes, or can be used as source of carbon for the synthesis of energy products. The reactions with dihydrogen, alcohols, epoxides, amines, olefins, dienes, and other unsaturated hydrocarbons are discussed, under various reaction conditions, using metal systems or enzymes as catalysts. The formation of products such as formic acid and its esters, formamides, methanol, dimethyl carbonate, alkylene carbonates, carbamic acid esters, lactones, carboxylic acids, and polycarbonates, is described . The factors that have limited so far the conversion of large volumes of CO 2 are analyzed and options for large‐scale CO 2 catalytic conversion into chemicals and fuels are discussed. Both homogeneous and heterogeneous catalysts are considered and the pros and cons of their use highlighted. © 2013 Society of Chemical Industry

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here