Premium
Antibacterial activity of silver‐doped manganese dioxide nanoparticles on multidrug‐resistant bacteria
Author(s) -
Kunkalekar R. K.,
Naik M. M.,
Dubey S. K.,
Salker A. V.
Publication year - 2013
Publication title -
journal of chemical technology and biotechnology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.64
H-Index - 117
eISSN - 1097-4660
pISSN - 0268-2575
DOI - 10.1002/jctb.3915
Subject(s) - antibacterial activity , staphylococcus aureus , pseudomonas aeruginosa , nanoparticle , multiple drug resistance , agar diffusion test , bacteria , silver nanoparticle , chemistry , minimum inhibitory concentration , microbiology and biotechnology , nuclear chemistry , materials science , antimicrobial , nanotechnology , drug resistance , biology , genetics
Abstract BACKGROUND: As a result of evolution of multiple drug resistance in human pathogens (bacteria) there is increasing demand for novel antibacterial agents, and recently, due to their high antibacterial and catalytic activities, metal nanoparticles have attracted the attention of researchers and medical microbiologists worldwide. RESULTS: Ni‐, Ce‐ and Ag‐doped MnO 2 nanoparticles were synthesized by a co‐precipitation method. Antibacterial activity of these synthesized nanoparticles on methicillin‐resistant Staphylococcus aureus and lead‐resistant Pseudomonas aeruginosa strain 4EA was investigated using a disc diffusion method. Only Ag‐doped MnO 2 nanoparticles showed an antibacterial property against methicillin‐resistant Staphylococcus aureus and lead‐resistant Pseudomonas aeruginosa strain 4EA at low levels of 60 µg/disc and 85 µg/disc, respectively. Scanning electron microscopy and transmission electron microscopy (SEM‐TEM) coupled with energy dispersive X‐ray (EDX) analysis revealed the nano‐size and composition of these synthesized nanoparticles. CONCLUSION: It was confirmed through a disc diffusion method that chemically synthesized silver doped MnO 2 nanoparticles have antibacterial activity against multidrug‐resistant Staphylococcus aureus and lead‐resistant Pseudomonas aeruginosa strain 4EA at low levels therefore these nanoparticles can be employed to fight and prevent infections caused by multidrug‐resistant bacterial pathogens. © 2012 Society of Chemical Industry