z-logo
Premium
Application of a two‐stage temperature control strategy to enhance 1,3‐propanediol productivity by Clostridium butyricum
Author(s) -
Zhu Chunjie,
Fang Baishan
Publication year - 2013
Publication title -
journal of chemical technology and biotechnology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.64
H-Index - 117
eISSN - 1097-4660
pISSN - 0268-2575
DOI - 10.1002/jctb.3911
Subject(s) - 1,3 propanediol , clostridium butyricum , glycerol , propanediol , productivity , raw material , fermentation , food science , chemistry , biochemistry , organic chemistry , economics , macroeconomics
BACKGROUND: The purpose of the present work was to enhance 1,3‐propanediol productivity during the batch cultivation on a type of raw glycerol by application of a two‐stage temperature control strategy. RESULTS: First, the effect of the raw glycerol on microbial growth and 1,3‐propanediol production was investigated. The highest 1,3‐propanediol productivity, 1.93 g L −1 h −1 , was achieved when the initial raw glycerol concentration was 6% (v/v). Second, the effect of temperature on microbial growth and 1,3‐propanediol production was investigated and kinetic analysis was carried out. The results indicated that 37 °C favored microbial growth while 35 °C was best for 1,3‐propanediol production. Finally, a two‐stage temperature control strategy was applied in 1,3‐propanediol production. The incubation temperature was kept at 37 °C from inoculation to 2 h and then switched to 35 °C. Compared with batch cultivations at 35 and 37 °C, the fermentation time was shortened from 10 to 9.2 h, resulting in an increase in 1,3‐propanediol productivity of around 11%. CONCLUSION: 1,3‐propanediol productivity was enhanced effectively by application of a two‐stage temperature control strategy. © 2012 Society of Chemical Industry

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here