z-logo
Premium
Pore‐forming technology and performance of MEA for direct methanol fuel cells
Author(s) -
Liu GuiCheng,
Wang YiTuo,
Zhang Jing,
Wang Meng,
Zhang ChaoJie,
Wang XinDong
Publication year - 2013
Publication title -
journal of chemical technology and biotechnology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.64
H-Index - 117
eISSN - 1097-4660
pISSN - 0268-2575
DOI - 10.1002/jctb.3906
Subject(s) - methanol fuel , anode , chemical engineering , membrane electrode assembly , cathode , direct methanol fuel cell , catalysis , dielectric spectroscopy , materials science , polarization (electrochemistry) , electrochemistry , nafion , methanol , chemistry , electrode , organic chemistry , engineering
BACKGROUND: The commercialization of DMFCs is seriously restricted by its relatively low power density. Lots of work has been concentrated on catalysts with high activity, the optimization of flow path design, development of new kinds of proton exchange membrane and modification of Nafion membrane. Meanwhile, very few reports have involved the structure optimization of the membrane electrode assembly (MEA). To improve the performance of direct methanol fuel cells (DMFCs), the catalyst layer (CL) structures of anode and cathode were optimized by utilizing ammonium carbonate as pore forming agent. RESULTS: The polarization curves showed that in catalyst slurry the optimal content of ammonium carbonate was 50 wt%, and the DMFC performance was enhanced from 75.65 mW cm −2 to 167.42 mW cm −2 at 55 °C and 0.2 MPa O 2 . Electrochemical impedance spectroscopy and electrochemical active surface area (EASA) testing revealed that the improved performance of optimized MEAs could be mainly attributed to the increasing EASA and the enhanced mass transfer rate of CLs. But poor methanol crossover limited the performance enhancement of MEAs with porous anodes. CONCLUSION: With regard to improving cell performance, this pore‐forming technology is better applied to the cathode catalyst layer to improve its structure rather than the anode catalyst layer. © 2012 Society of Chemical Industry

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here