z-logo
Premium
Performance of silicon‐carbide foams as supports for Pd‐based methane combustion catalysts
Author(s) -
Marín Pablo,
Ordóñez Salvador,
Díez Fernando V.
Publication year - 2012
Publication title -
journal of chemical technology and biotechnology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.64
H-Index - 117
eISSN - 1097-4660
pISSN - 0268-2575
DOI - 10.1002/jctb.2726
Subject(s) - methane , catalysis , catalytic combustion , silicon carbide , combustion , chemical engineering , materials science , chemistry , metallurgy , organic chemistry , engineering
BACKGROUND: Cellular foam materials are a new type of catalyst support that provides improved mass and heat transport characteristics and similar pressure drops to other well‐established structured supports such as monoliths. RESULTS: A Pd‐based catalyst has been prepared using a moderate surface area (25 m 2 g −1 ) β‐SiC foam support without further washcoating. The stability of this catalyst has been tested for methane combustion at lean conditions, showing a small decrease of activity during the first 10 h followed by stable performance. Characterization of fresh and aged catalyst shows no significant changes. The influence of the most important reaction conditions, such as reactor loading (0.25–1 g), temperature (300–550 °C) and inlet methane concentration (833 and 1724 ppm), was studied in a fixed‐bed reactor. The results were fitted to three kinetic models: Mars‐van Krevelen; Langmuir‐Hinselwood; power‐law kinetics. CONCLUSIONS: The Pd/β‐SiC foam catalyst, prepared without the previous addition of a washcoating has been demonstrated to be stable for the combustion of methane‐air lean mixtures. A Mars‐van Krevelen kinetic model provides the best fit to the results obtained. Copyright © 2011 Society of Chemical Industry

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom