z-logo
Premium
Particle size distribution based evaluation of biodegradation and treatability for leachate from organic waste
Author(s) -
Doǧruel Serdar,
Köktuna Merve,
Çokgör Emine Ubay,
Sözen Seval,
Orhon Derin
Publication year - 2011
Publication title -
journal of chemical technology and biotechnology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.64
H-Index - 117
eISSN - 1097-4660
pISSN - 0268-2575
DOI - 10.1002/jctb.2645
Subject(s) - chemical oxygen demand , leachate , biodegradation , chemistry , fraction (chemistry) , lime , environmental chemistry , fractionation , particulates , adsorption , pulp and paper industry , wastewater , environmental science , environmental engineering , chromatography , materials science , organic chemistry , engineering , metallurgy
BACKGROUND: The study evaluated the relationship between particle size distribution (PSD) of chemical oxygen demand (COD) and treatability of leachate generated by organic waste. PSD determinations were performed together with physico‐chemical and biological treatability studies. Leachate biodegradation was also evaluated by means of oxygen uptake rate (OUR) profiles and experimental results were used for calibration of the adopted mathematical model. RESULTS: The leachate was characterized by a COD content of 80 000 mg L −1 in summer. PSD analysis showed a bimodal distribution with around 60% of the COD below 2 nm and 25% above 1600 nm. Chemical treatment by lime and alum provided limited COD removal (30‐35%). The extent of COD removal was higher than the particulate COD fraction above 1600 nm, it also occurred in the soluble range below 2 nm through adsorption. A modeling study indicated three major COD fractions that could be correlated with PSD analysis: readily biodegradable COD and slowly biodegradable COD in the soluble range and hydrolyzable COD fraction in the particulate range. CONCLUSION: PSD‐based COD fractionation adequately explained limitations of chemical treatment efficiency; it was also a reliable complement to the currently used respirometric tests for biodegradation, providing insight to the fate of different COD fractions included in the soluble range (<2 nm) and yielding concrete supporting information on the generation of soluble residual microbial products. Copyright © 2011 Society of Chemical Industry

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here