Premium
Denitrifying phosphorus removal with nitrite by a real‐time step feed sequencing batch reactor
Author(s) -
Peng YongZhen,
Wu ChangYong,
Wang RanDeng,
Li XiaoLing
Publication year - 2011
Publication title -
journal of chemical technology and biotechnology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.64
H-Index - 117
eISSN - 1097-4660
pISSN - 0268-2575
DOI - 10.1002/jctb.2548
Subject(s) - nitrite , denitrifying bacteria , chemistry , sequencing batch reactor , nitrate , phosphorus , anoxic waters , phosphate , enhanced biological phosphorus removal , batch reactor , denitrification , inorganic chemistry , environmental chemistry , environmental engineering , nitrogen , activated sludge , wastewater , biochemistry , organic chemistry , environmental science , catalysis
Abstract BACKGROUND: Nitrite is toxic to anoxic phosphorus uptake when it exceeds a threshold concentration. In this study, denitrifying phosphorus removal with nitrite as electron acceptor was investigated in a sequencing batch reactor (SBR) operated using a real‐time step feed strategy. RESULTS: The nitrite pulse concentration was initially determined by batch experiments. pH increased with use of nitrite for phosphate uptake, and decreased when the nitrite was used up. Nitrite was added promptly after the pH reached the peak value, and phosphate uptake continued, driven by the nitrite addition. The pH was adjusted to 7.50 using HCl with each pulse of nitrite addition. ORP could be used to determine the endpoint of denitrifiying phosphorus removal. However, the variation of second derivative of ORP with time was much more sensitive and should be a more suitable control parameter than ORP itself to determine the endpoint of denitrifying phosphorus removal. CONCLUSION: Compared with denitrifying phosphorus removal with nitrate as electron acceptor, denitrifying phosphorus removal with nitrite using real‐time step feed can save 22.3% of polyhydroxyalkanoate (PHA) for phosphorus removal and 49.4% of PHA for nitrogen removal. In addition, the reaction time could be shortened. Copyright © 2010 Society of Chemical Industry