z-logo
Premium
Production of olefins from ethanol by Fe and/or P‐modified H‐ZSM‐5 zeolite catalysts
Author(s) -
Inaba Megumu,
Murata Kazuhisa,
Takahara Isao,
Inoue Kenichiro
Publication year - 2011
Publication title -
journal of chemical technology and biotechnology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.64
H-Index - 117
eISSN - 1097-4660
pISSN - 0268-2575
DOI - 10.1002/jctb.2519
Subject(s) - selectivity , catalysis , chemistry , zeolite , calcination , ethanol , organic chemistry , inorganic chemistry
BACKGROUND: Much attention has been paid to the catalytic conversion of ethanol to olefins, since biomass resources such as ethanol are carbon‐neutral and renewable, and olefins are useful as both fuels and chemicals. It has been reported that zeolite H‐ZSM‐5 is effective for converting ethanol to hydrocarbons, with the chief products being aromatic compounds. RESULTS: Successive addition of Fe and P to the H‐ZSM‐5 improved the initial selectivity for propylene, while the sole addition of Fe or P and co‐addition of Fe and P showed medium initial selectivity. In general, catalysts showing higher initial selectivity for propylene exhibited a steeper decrease in propylene selectivity with time on‐stream. The cause of the change in product selectivity may be carbon deposition during reaction. Addition of Fe and P can improve catalytic stability when processing both neat and aqueous ethanol. The catalytic performance was regenerated by calcination in flowing air. CONCLUSION: Fe‐ and/or P‐modified H‐ZSM‐5 zeolite catalysts efficiently produced olefins (especially propylene) from ethanol. Effective catalyst regeneration was achieved by calcination in flowing air. Copyright © 2010 Society of Chemical Industry

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here