Premium
Effluent treatment using a bipolar electrochemical reactor with rotating cylinder electrodes of woven wire meshes
Author(s) -
Grau Javier M,
Bisang José M
Publication year - 2009
Publication title -
journal of chemical technology and biotechnology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.64
H-Index - 117
eISSN - 1097-4660
pISSN - 0268-2575
DOI - 10.1002/jctb.2199
Subject(s) - electrode , electrochemistry , materials science , copper , cylinder , deposition (geology) , polygon mesh , space velocity , hydrogen , composite material , analytical chemistry (journal) , chemical engineering , chemistry , metallurgy , mechanical engineering , catalysis , geometry , chromatography , paleontology , biochemistry , mathematics , sediment , selectivity , biology , organic chemistry , engineering
BACKGROUND: The behaviour of a bipolar electrochemical reactor consisting of one or more rotating cylinder electrodes of woven wire meshes is reported using copper and cadmium deposition from dilute solutions as test reactions. RESULTS: The best performance related to electrode number was determined for copper deposition and was achieved by an arrangement with two bipolar electrodes, for which the conversion in a single pass was approximately 47%. The specific energy consumption was 3.27 kWh kg −1 with a normalised space velocity of 23.05 h −1 . The copper powder obtained showed a nodular and dendritic surface morphology. This reactor configuration was also analysed for cadmium deposition, in which hydrogen evolution takes place simultaneously as a side cathodic reaction, considering the effect of flow rate and total current. The maximum conversion per pass for cadmium removal was 38.91%. In this case the reactor with two bipolar electrodes showed a performance similar to that of a monopolar reactor operated at a rotation speed three times higher. CONCLUSION: A continuous electrochemical reactor with two rotating bipolar electrodes of woven wire meshes presents a good performance for copper or cadmium removal from dilute solutions. Copyright © 2009 Society of Chemical Industry
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom