Premium
Immobilization of penicillin G acylase on a composite carrier with a biocompatible microenvironment of chitosan
Author(s) -
Jin Xin,
Wu Qi,
Chen Qing,
Chen ChunXiu,
Lin XianFu
Publication year - 2008
Publication title -
journal of chemical technology and biotechnology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.64
H-Index - 117
eISSN - 1097-4660
pISSN - 0268-2575
DOI - 10.1002/jctb.1992
Subject(s) - chitosan , biocompatible material , chemistry , composite number , immobilized enzyme , adsorption , nuclear chemistry , thermal stability , biocompatibility , penicillin , chemical engineering , enzyme , materials science , organic chemistry , biochemistry , antibiotics , composite material , biomedical engineering , medicine , engineering
BACKGROUND: Penicillin G acylase (PGA) has been used extensively in the β‐lactam antibiotics industry. As a biocatalyst, it is better to use immobilized enzymes than free enzymes, therefore, the immobilization of PGA on a composite carrier consisting of an adsorbent resin and biocompatible chitosan were investigated. RESULTS: First, FT‐IR, BET and SEM analysis confirmed the structure of the composite carrier. Then, the immobilization process was optimized. The activity of the immobilized PGA on the chitosan–resin (IP‐CsR) was about 1300 U (g dry carrier) −1 with a protein loading of about 27 mg (g dry carrier) −1 . Compared with the immobilized PGA on unmodified resin (IP‐R), the specific activity of IP‐CsR was enhanced about 2‐fold. The operational, thermal and pH stability were investigated. IP‐CsR maintained more than 75% initial activity after 35 cycles, while IP‐R was active for only 10 cycles. The half‐life at 50 °C increased from 75 to 300 min and the most stable pH was changed from 8.0 to 5.5. CONCLUSION: A novel composite carrier containing a biocompatible chitosan was very effective for PGA immobilization. Copyright © 2008 Society of Chemical Industry