z-logo
Premium
Effects of influent C/N ratio, C/P ratio and volumetric exchange ratio on biological phosphorus removal in UniFed SBR process
Author(s) -
Zhao Chenhong,
Peng Yongzhen,
Wang Shuying,
Takigawa Akio
Publication year - 2008
Publication title -
journal of chemical technology and biotechnology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.64
H-Index - 117
eISSN - 1097-4660
pISSN - 0268-2575
DOI - 10.1002/jctb.1943
Subject(s) - phosphorus , chemistry , effluent , phosphate , nitrogen , enhanced biological phosphorus removal , wastewater , environmental engineering , activated sludge , biochemistry , organic chemistry , environmental science
BACKGROUND: UniFed SBR is a novel process that can achieve high levels of nitrogen and phosphorus removal simultaneously in a simple single SBR tank. In this study, effects of influent C/N ratio, influent C/P ratio and volumetric exchange ratio on biological phosphorus removal in UniFed SBR process were investigated in a lab‐scale UniFed apparatus treating real domestic wastewater. RESULTS: The results showed that phosphorus removal efficiency increased as C/N ratio increased from 27% at 2.8 to 88% at 5.7. For C/N ratios 6.5 and above, complete phosphorus removal could be achieved. When C/N ratios and volumetric exchange ratio were fixed at 6 and 33%, respectively, phosphorus removal efficiency remained at 100% for C/P ratios higher than 33; effluent phosphate concentration was below the detection limit. For C/P ratios lower than 33, phosphorus removal efficiency decreased linearly with C/P ratio. Under the same influent C/N ratio and C/P ratio, the following factors all contributed to better phosphorus removal performance: greater volumetric exchange ratio; more organic substrate for PAOs to utilize, less inhibition by NO x − of phosphorus release during the feed/decant period; more PHB synthesized; and more aerobic phosphate uptake. CONCLUSION: High influent C/N ratio, high C/P ratio and high volumetric exchange ratio were beneficial to phosphorus removal in this process. Copyright © 2008 Society of Chemical Industry

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here