z-logo
Premium
Bubble size in a forced circulation loop reactor
Author(s) -
Fadavi Ali,
Chisti Yusuf,
Chriaštel Ladislav
Publication year - 2008
Publication title -
journal of chemical technology and biotechnology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.64
H-Index - 117
eISSN - 1097-4660
pISSN - 0268-2575
DOI - 10.1002/jctb.1766
Subject(s) - bubble , sparging , mechanics , volume (thermodynamics) , volumetric flow rate , sauter mean diameter , materials science , circulation (fluid dynamics) , flow (mathematics) , chemistry , thermodynamics , physics , nozzle
BACKGROUND: The bubble size distribution in gas‐liquid reactors influences gas holdup, residence time distribution, and gas‐liquid interfacial area for mass transfer. This work reports on the effects of independently varied gas and liquid flow rates on steady‐state bubble size distributions in a new design of forced circulation loop reactor operated with an air–water system. The reactor consisted of a cylindrical vessel (∼26 L nominal volume, gas‐free aspect ratio ≈ 6, downcomer‐to‐riser cross‐sectional area ratio of 0.493) with a concentric draft tube and an annular riser zone. Both gas and liquid were in forced flow through a sparger that had been designed for minimizing the bubble size. RESULTS: Photographically measured bubble size distributions in the riser zone could be approximated as normal distributions for the combinations of gas and liquid flow rates used. This contrasted with other kinds of size distributions (e.g. bimodal, Gaussian) that have been reported for other types of gas‐liquid reactors. Most of the bubbles were in the 3 to 5 mm diameter range. At any fixed low value of aeration rate (≤1.8 × 10 −4 m 3 s −1 ), increase in the liquid flow rate caused earlier detachment of bubbles from the sparger holes to reduce the Sauter mean bubble size in the riser region. CONCLUSION: Unlike in conventional bubble columns where bimodal and Gaussian bubble size distributions have been reported, a normal bubble size distribution is attained in forced circulation loop reactors with an air–water system over the entire range of operation. Copyright © 2007 Society of Chemical Industry

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here