z-logo
Premium
Polyhydroxyalkanoates: biodegradable polymers with a range of applications
Author(s) -
Philip S.,
Keshavarz T.,
Roy I.
Publication year - 2007
Publication title -
journal of chemical technology and biotechnology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.64
H-Index - 117
eISSN - 1097-4660
pISSN - 0268-2575
DOI - 10.1002/jctb.1667
Subject(s) - polyhydroxyalkanoates , context (archaeology) , renewable energy , biodegradable polymer , polyester , bioplastic , biochemical engineering , waste management , environmental science , materials science , polymer , engineering , composite material , paleontology , genetics , bacteria , electrical engineering , biology
Abstract Increased and accelerated global economic activities over the past century have led to interlinked problems that require urgent attention. The current patterns of production and consumption have raised serious concerns. In this context, greater emphasis has been put on the concept of sustainable economic systems that rely on technologies based on and supporting renewable sources of energy and materials. Average UK households produce around 3.2 million tonnes of packaging waste annually whereas 150 million tonnes of packaging waste is generated annually by industries in the UK. Hence, the development of biologically derived biodegradable polymers is one important element of the new economic development. Key among the biodegradable biopolymers is a class known as polyhydroxyalkanoates. Polyhydroxyalkanoates (PHAs) are a family of polyhydroxyesters of 3‐, 4‐, 5‐ and 6‐hydroxyalkanoic acids, produced by a variety of bacterial species under nutrient‐limiting conditions with excess carbon. These water‐insoluble storage polymers are biodegradable, exhibit thermoplastic properties and can be produced from renewable carbon sources. Thus, there has been considerable interest in the commercial exploitation of these biodegradable polyesters. In this review various applications of polyhydroxyalkanoates are discussed, covering areas such as medicine, agriculture, tissue engineering, nanocomposites, polymer blends and chiral synthesis. Overall this review shows that polyhydroxyalkanoates are a promising class of new emerging biopolymers. Copyright © 2007 Society of Chemical Industry

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here