Premium
Adsorption of bismuth(III) by bayberry tannin immobilized on collagen fiber
Author(s) -
Wang Ru,
Liao Xuepin,
Zhao Shilin,
Shi Bi
Publication year - 2006
Publication title -
journal of chemical technology and biotechnology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.64
H-Index - 117
eISSN - 1097-4660
pISSN - 0268-2575
DOI - 10.1002/jctb.1571
Subject(s) - adsorption , chemistry , tannin , collagen fiber , microporous material , ethylenediaminetetraacetic acid , bismuth , fiber , kinetics , inorganic chemistry , nuclear chemistry , chromatography , organic chemistry , chelation , medicine , physics , food science , quantum mechanics , anatomy
The adsorption behavior of collagen fiber‐immobilized bayberry tannin towards Bi(III) at acidic pH values was investigated. The adsorption capacity of the adsorbent towards Bi(III) was 0.348 mmol g −1 at 303 K, and increased with the rise in temperature. The adsorption isotherms of Bi(III) were in the shape of so‐called type II isotherms and could be described by an empirical equation, ln q e = k + (1/ n ) C e , which implies that chemical adsorption is predominant at lower concentrations of Bi(III) and that physical adsorption is involved at higher concentrations. The adsorption kinetics of Bi(III) on the immobilized bayberry tannin could be well described by the pseudo‐second‐order rate model, and the adsorption capacities calculated by the model were almost the same as those determined by actual measurements. The adsorbent could be regenerated by using 0.02 mol dm −3 ethylenediaminetetraacetic acid (EDTA) solution after adsorption of Bi(III). The adsorption selectivity of the immobilized bayberry tannin towards Bi(III) in a Cu(II)–Bi(III) binary solution in acidic medium was remarkable. Therefore, it is strongly suggested that the immobilized bayberry tannin could be applied to the removal of Bi(III) from crude Cu(II) samples under proper conditions. Copyright © 2006 Society of Chemical Industry