z-logo
Premium
Application of tris(hydroxymethyl)phosphine as a coupling agent for β‐galactosidase immobilized on chitosan to produce galactooligosaccharides
Author(s) -
Cheng TzuChien,
Duan KowJen,
Sheu DeyChyi
Publication year - 2006
Publication title -
journal of chemical technology and biotechnology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.64
H-Index - 117
eISSN - 1097-4660
pISSN - 0268-2575
DOI - 10.1002/jctb.1385
Subject(s) - chemistry , hydroxymethyl , tris , lactose , chitosan , yield (engineering) , immobilized enzyme , phosphine , enzyme , sodium acetate , chromatography , buffer solution , nuclear chemistry , organic chemistry , biochemistry , catalysis , materials science , metallurgy
β‐Galactosidase was immobilized on chitosan using tris(hydroxymethyl)phosphine (THP) as a coupling agent to produce galactooligosaccharides (GOS) from lactose. Both the THP‐immobilized and the free enzymes were maximally achieved at pH 5.0 and the optimal temperature was 55 °C. The residual activities for the THP‐immobilized enzyme and the free enzyme were 75 and 25%, respectively, after being incubated in 0.1 mol dm −3 sodium acetate buffer (pH 5.0) at 55 °C for 13 days. The formation of GOS was catalyzed by free and THP‐immobilized β‐galactosidase from lactose. The yield of GOS produced by the free enzyme from the lactose solution (36%, w/v) at 55 °C was 43% on a dry weight basis, which was similar to the 41% GOS yield produced by the THP‐immobilized enzyme system. Copyright © 2005 Society of Chemical Industry

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom