Premium
Production of β‐galactosidase from recombinant Saccharomyces cerevisiae grown on lactose
Author(s) -
Domingues Lucília,
Oliveira Carla,
Castro Inês,
Lima Nelson,
Teixeira José A
Publication year - 2004
Publication title -
journal of chemical technology and biotechnology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.64
H-Index - 117
eISSN - 1097-4660
pISSN - 0268-2575
DOI - 10.1002/jctb.1025
Subject(s) - lactose , fermentation , biochemistry , yeast , saccharomyces cerevisiae , beta galactosidase , galactose , extracellular , food science , bioreactor , chemistry , fed batch culture , biology , botany , gene expression , gene
Improved productivity and costs reduction in fermentation processes may be attained by using flocculating cell cultures. The production of extracellular heterologous β‐galactosidase by recombinant flocculating Saccharomyces cerevisiae cells, expressing the lacA gene (coding for β‐galactosidase) of Aspergillus niger under the ADHI promotor and terminator in a bioreactor was studied. The effects of lactose concentration and yeast extract concentration on β‐galactosidase production in a semi‐synthetic medium were analysed. The extracellular β‐galactosidase activity increased linearly with increasing initial lactose concentrations (5–150 g dm −3 ). β‐Galactosidase production also increased with increased yeast extract concentration. During the entire fermentation, no accumulation of the hydrolysed sugars, glucose and galactose, was observed. The catabolic repression of the recombinant strain when cultured in a medium containing equal amounts of glucose and galactose was confirmed. In complete anaerobiosis, the fermentation of lactose resulted in a very slow fermentation pattern with lower levels of β‐galactosidase activity. The bioreactor operation together with optimisation of culture conditions (lactose and yeast extract concentration) led to a 21‐fold increase in the extracellular β‐galactosidase activity produced when compared with preliminary Erlenmeyer fermentations. Copyright © 2004 Society of Chemical Industry