z-logo
Premium
Sclerostin inhibits odontogenic differentiation of human pulp‐derived odontoblast‐like cells under mechanical stress
Author(s) -
Liao Chufang,
Ou Yanjing,
Wu Yun,
Zhou Yi,
Liang Shanshan,
Wang Yining
Publication year - 2019
Publication title -
journal of cellular physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.529
H-Index - 174
eISSN - 1097-4652
pISSN - 0021-9541
DOI - 10.1002/jcp.28684
Subject(s) - sclerostin , odontoblast , osteopontin , chemistry , microbiology and biotechnology , osteocalcin , cementoblast , downregulation and upregulation , dentin sialophosphoprotein , wnt signaling pathway , dentinogenesis , dentin , signal transduction , medicine , pathology , biology , biochemistry , alkaline phosphatase , cementum , gene , enzyme
Sclerotic dentin is a natural self‐protective barrier beneath non‐carious cervical lesions (NCCLs), which are mainly induced by mechanical stress. Sclerostin is a mechanosensory protein and serves as an inhibitor of dentinogenesis. However, its function on mechanotransduction in dentine–pulp complex has not been elucidated yet. In this study, decreased sclerostin expression was detected in odontoblasts beneath NCCL‐affected sclerotic dentin. Then human pulp‐derived odontoblast‐like cells (hOBs) were subjected to mechanical strain (MS) in vitro: the results showed that MS‐induced upregulation of odontogenic differentiation markers (dentin sialophosphoprotein, osteopontin, osteocalcin, and runt‐related transcription factor 2) in hOBs with downregulated sclerostin expression, and this inductive differentiation was attenuated when sclerostin was overexpressed. Additionally, MS activated ERK1/2 pathway and ERK1/2 inhibition restored MS‐induced downregulation of sclerostin. Proteasome inhibitor MG132 could also rescue MS‐induced decrease of sclerostin. Furthermore, MS suppressed STAT3 pathway, which could be reversed by sclerostin overexpression. STAT3 inhibition was shown to ameliorate the reduction of odontogenic markers induced by sclerostin overexpression. Taken together, we conclude that MS downregulates sclerostin expression via the ERK1/2 and proteasome signaling pathways to promote odontogenic differentiation of hOBs through the STAT3 signaling pathway. It can therefore be inferred that under mechanical stress, sclerostin inhibition promotes reactive dentin formation by enhancing odontogenic differentiation of odontoblasts, which might be one of potential forming mechanisms of sclerotic dentin beneath NCCLs.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here