z-logo
Premium
The rate of fluid shear stress is a potent regulator for the differentiation of mesenchymal stem cells
Author(s) -
Yue Danyang,
Zhang Mengxue,
Lu Juan,
Zhou Jin,
Bai Yuying,
Pan Jun
Publication year - 2019
Publication title -
journal of cellular physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.529
H-Index - 174
eISSN - 1097-4652
pISSN - 0021-9541
DOI - 10.1002/jcp.28296
Subject(s) - mesenchymal stem cell , chondrogenesis , chemistry , regulator , microbiology and biotechnology , shear stress , substrate (aquarium) , biophysics , stem cell , anatomy , materials science , biology , biochemistry , composite material , gene , ecology
We have previously demonstrated that the rate of fluid shear stress (ΔSS) can manipulate the fate of mesenchymal stem cells (MSCs) to osteogenic or chondrogenic cells. However, whether ΔSS is comparable to other two means of induction medium and substrate stiffness that have been proven to be potent in differentiation control is unknown. In this study, we subjected MSCs to 1–7 days of osteogenic or chondrogenic chemical induction, or 1–4 days of 37 or 86 kPa of substrate stiffness induction, followed by 20 min of Fast ΔSS (0–0′) or Slow ΔSS (0–2′), which is a laminar FSS that linearly increased from 0 to 10 dyn/cm 2 in 0 (Fast) or 2 min (Slow) and maintained at 10 dyn/cm 2 for a total of 20 min. We found that 20 min of ΔSS could compete with 5 days' chemical and 2 days' substrate stiffness inductions. Our study confirmed that ΔSS is a powerful tool to control the differentiation of MSCs, which stressed the possible application in MSCs linage specification.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here