Premium
NOD1 downregulates intestinal serotonin transporter and interacts with other pattern recognition receptors
Author(s) -
Layunta Elena,
Latorre Eva,
Forcén Raquel,
Grasa Laura,
Plaza Miguel A.,
Arias Maykel,
Alcalde Ana I.,
Mesonero José E.
Publication year - 2018
Publication title -
journal of cellular physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.529
H-Index - 174
eISSN - 1097-4652
pISSN - 0021-9541
DOI - 10.1002/jcp.26229
Subject(s) - nod1 , serotonergic , tlr4 , tlr2 , receptor , biology , innate immune system , microbiology and biotechnology , signal transduction , serotonin , pattern recognition receptor , serotonin transporter , nod2 , biochemistry
Serotonin (5‐HT) is an essential gastrointestinal modulator whose effects regulate the intestinal physiology. 5‐HT effects depend on extracellular 5‐HT bioavailability, which is controlled by the serotonin transporter (SERT) expressed in both the apical and basolateral membranes of enterocytes. SERT is a critical target for regulating 5‐HT levels and consequently, modulating the intestinal physiology. The deregulation of innate immune receptors has been extensively studied in inflammatory bowel diseases (IBD), where an exacerbated defense response to commensal microbiota is observed. Interestingly, many innate immune receptors seem to affect the serotonergic system, demonstrating a new way in which microbiota could modulate the intestinal physiology. Therefore, our aim was to analyze the effects of NOD1 activation on SERT function, as well as NOD1's interaction with other immune receptors such as TLR2 and TLR4. Our results showed that NOD1 activation inhibits SERT activity and expression in Caco‐2/TC7 cells through the extracellular signal‐regulated kinase (ERK) signaling pathway. A negative feedback between 5‐HT and NOD1 expression was also described. The results showed that TLR2 and TLR4 activation seems to regulate NOD1 expression in Caco‐2/TC7 cells. To assess the extend of cross‐talk between NOD1 and TLRs, NOD1 expression was measured in the intestinal tract (ileum and colon) of wild type mice and mice with individual knockouts of TLR2, and TLR4 as well as double knockout TLR2/TLR4 mice. Hence, we demonstrate that NOD1 acts on the serotonergic system decreasing SERT activity and molecular expression. Additionally, NOD1 expression seems to be modulated by 5‐HT and other immune receptors as TLR2 and TLR4. This study could clarify the relation between both the intestinal serotonergic system and innate immune system, and their implications in intestinal inflammation.