z-logo
Premium
Genetic and epigenetic factors influencing vitamin D status
Author(s) -
Bahrami Afsane,
Sadeghnia Hamid Reza,
Tabatabaeizadeh SeyedAmir,
BahramiTaghanaki Hamidreza,
Behboodi Negin,
Esmaeili Habibollah,
Ferns Gordon A.,
Mobarhan Majid Ghayour,
Avan Amir
Publication year - 2018
Publication title -
journal of cellular physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.529
H-Index - 174
eISSN - 1097-4652
pISSN - 0021-9541
DOI - 10.1002/jcp.26216
Subject(s) - epigenetics , biology , genetics , vitamin d and neurology , gene , endocrinology
The global prevalence of vitamin D deficiency appears to be increasing, and the impact of this on human health is important because of the association of vitamin D insufficiency with increased risk of osteoporosis, cardiovascular disease and some cancers. There are few studies on the genetic factors that can influence vitamin D levels. In particular, the data from twin and family‐based studies have reported that circulating vitamin D concentrations are partially determined by genetic factors. Moreover, it has been shown that genetic variants (e.g., mutation) and alteration (e.g., deletion, amplification, inversion) in genes involved in the metabolism, catabolism, transport, or binding of vitamin D to it receptor, might affect vitamin D level. However, the underlying genetic determinants of plasma 25‐hydroxyvitamin D3 [25(OH)D] concentrations remain to be elucidated. Furthermore, the association between epigenetic modifications such as DNA methylation and vitamin D level has now been reported in several studies. The aim of current review was to provide an overview of the possible value of loci associated to vitamin D metabolism, catabolism, and transport as well epigenetic modification and environmental factors influencing vitamin D status.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here