z-logo
Premium
Transplantation of mesenchymal stem cells overexpressing IL10 attenuates cardiac impairments in rats with myocardial infarction
Author(s) -
Meng Xin,
Li Jianping,
Yu Ming,
Yang Jian,
Zheng Minjuan,
Zhang Jinzhou,
Sun Chao,
Liang Hongliang,
Liu Liwen
Publication year - 2018
Publication title -
journal of cellular physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.529
H-Index - 174
eISSN - 1097-4652
pISSN - 0021-9541
DOI - 10.1002/jcp.25919
Subject(s) - mesenchymal stem cell , interleukin 10 , transplantation , medicine , inflammation , stem cell , apoptosis , myocardial infarction , immunology , cytokine , biology , pathology , microbiology and biotechnology , biochemistry
Mesenchymal stem cell (MSC) has been well known to exert therapeutic potential for patients with myocardial infarction (MI). In addition, interleukin‐10 (IL10) could attenuate MI through suppressing inflammation. Thus, the combination of MSC implantation with IL10 delivery may extend health benefits to ameliorate cardiac injury after MI. Here we established overexpression of IL10 in bone marrow‐derived MSC through adenoviral transduction. Cell viability, apoptosis, and IL10 secretion under ischemic challenge in vitro were examined. In addition, MSC was transplanted into the injured hearts in a rat model of MI. Four weeks after the MI induction, MI, cardiac functions, apoptotic cells, and inflammation cytokines were assessed. In response to in vitro oxygen‐glucose deprivation (OGD), IL10 overexpression in MSC (Ad.IL10‐MSC) enhanced cell viability, decreased apoptosis, and increased IL10 secretion. Consistently, the implantation of Ad.IL10‐MSCs into MI animals resulted in more reductions in myocardial infarct size, cardiac impairment, and cell apoptosis, compared to the individual treatments of either MSC or IL10 administration. Moreover, the attenuation of both systemic and local inflammations was most prominent for Ad.IL10‐MSC treatment. IL10 overexpression and MSC may exert a synergistic anti‐inflammatory effect to alleviate cardiac injury after MI.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here