Premium
Rapamycin attenuates BAFF‐extended proliferation and survival via disruption of mTORC1/2 signaling in normal and neoplastic B‐lymphoid cells
Author(s) -
Zeng Qingyu,
Qin Shanshan,
Zhang Hai,
Liu Beibei,
Qin Jiamin,
Wang Xiaoxue,
Zhang Ruijie,
Liu Chunxiao,
Dong Xiaoqing,
Zhang Shuangquan,
Huang Shile,
Chen Long
Publication year - 2018
Publication title -
journal of cellular physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.529
H-Index - 174
eISSN - 1097-4652
pISSN - 0021-9541
DOI - 10.1002/jcp.25913
Subject(s) - mtorc1 , survivin , pi3k/akt/mtor pathway , protein kinase b , p70 s6 kinase 1 , cell growth , cancer research , mtorc2 , microbiology and biotechnology , b cell activating factor , biology , viability assay , signal transduction , downregulation and upregulation , chemistry , cell culture , cell , b cell , immunology , biochemistry , gene , antibody , genetics
B cell activating factor from the TNF family (BAFF) stimulates B‐cell proliferation and survival, but excessive BAFF promotes the development of aggressive B cells leading to malignant and autoimmune diseases. Recently, we have reported that rapamycin, a macrocyclic lactone, attenuates human soluble BAFF (hsBAFF)‐stimulated B‐cell proliferation/survival by suppressing mTOR‐mediated PP2A‐Erk1/2 signaling pathway. Here, we show that the inhibitory effect of rapamycin on hsBAFF‐promoted B cell proliferation/survival is also related to blocking hsBAFF‐stimulated phosphorylation of Akt, S6K1, and 4E‐BP1, as well as expression of survivin in normal and B‐lymphoid (Raji and Daudi) cells. It appeared that both mTORC1 and mTORC2 were involved in the inhibitory activity of rapamycin, as silencing raptor or rictor enhanced rapamycin's suppression of hsBAFF‐induced survivin expression and proliferation/viability in B cells. Also, PP242, an mTORC1/2 kinase inhibitor, repressed survivin expression, and cell proliferation/viability more potently than rapamycin (mTORC1 inhibitor) in B cells in response to hsBAFF. Of interest, ectopic expression of constitutively active Akt (myr‐Akt) or constitutively active S6K1 (S6K1‐ca), or downregulation of 4E‐BP1 conferred resistance to rapamycin's attenuation of hsBAFF‐induced survivin expression and B‐cell proliferation/viability, whereas overexpression of dominant negative Akt (dn‐Akt) or constitutively hypophosphorylated 4E‐BP1 (4EBP1‐5A), or downregulation of S6K1, or co‐treatment with Akt inhibitor potentiated the inhibitory effects of rapamycin. The findings indicate that rapamycin attenuates excessive hsBAFF‐induced cell proliferation/survival via blocking mTORC1/2 signaling in normal and neoplastic B‐lymphoid cells. Our data underscore that rapamycin may be a potential agent for preventing excessive BAFF‐evoked aggressive B‐cell malignancies and autoimmune diseases.