z-logo
Premium
Stimulatory Effects of Coumestrol on Embryonic and Fetal Development Through AKT and ERK1/2 MAPK Signal Transduction
Author(s) -
Lim Whasun,
Song Gwonhwa
Publication year - 2016
Publication title -
journal of cellular physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.529
H-Index - 174
eISSN - 1097-4652
pISSN - 0021-9541
DOI - 10.1002/jcp.25381
Subject(s) - coumestrol , mapk/erk pathway , ly294002 , pi3k/akt/mtor pathway , signal transduction , protein kinase b , phosphorylation , biology , conceptus , microbiology and biotechnology , fetus , endocrinology , medicine , andrology , pregnancy , estrogen , phytoestrogens , genetics
Successful establishment of pregnancy is required for fetal‐maternal interactions regulating implantation, embryonic development and placentation. A uterine environment with insufficient growth factors and nutrients increases the incidence of intrauterine growth restriction (IUGR) leading to an impaired uterine environment. In the present study, we demonstrated the effects of the phytoestrogen coumestrol on conceptus development in the pig that is regarded as an excellent biomedical animal model for research on IUGR. Results of this study indicated that coumestrol induced migration of porcine trophectoderm (pTr) cells in a concentration‐dependent manner. In response to coumestrol, the phosphorylation of AKT, P70S6K, S6, ERK1/2 MAPK, and P90RSK proteins were activated in pTr cells and ERK1/2 MAPK and P90RSK phosphorylation was prolonged for a longer period than for the other proteins. To identify the signal transduction pathway induced by coumestrol, pharmacological inhibitors U0126 (an ERK1/2 inhibitor) and LY294002 (a PI3K inhibitor) were used to pretreat pTr cells. The results showed that coumestrol‐induced phosphorylation of ERK1/2 MAPK and P90RSK was blocked by U0126. In addition, the increased phosphorylation in response to coumestrol was completely inhibited following pre‐treatment incubation of pTr cells in the presence of LY294002 and U0126. Furthermore, these two inhibitors suppressed the ability of coumestrol to induce migration of pTr cells. Collectively, these findings suggest that coumestrol affects embryonic development through activation of the PI3K/AKT and ERK1/2 MAPK cell signal transduction pathways and improvement in the uterine environment through coumestrol supplementation may provide beneficial effects of enhancing embryonic and fetal survival and development. J. Cell. Physiol. 231: 2733–2740, 2016. © 2016 Wiley Periodicals, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here