Premium
Hesperetin Induces Apoptosis in Breast Carcinoma by Triggering Accumulation of ROS and Activation of ASK1/JNK Pathway
Author(s) -
Palit Shreyasi,
Kar Susanta,
Sharma Gunjan,
Das Pijush K.
Publication year - 2015
Publication title -
journal of cellular physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.529
H-Index - 174
eISSN - 1097-4652
pISSN - 0021-9541
DOI - 10.1002/jcp.24818
Subject(s) - hesperetin , apoptosis , chemistry , dna fragmentation , cytochrome c , reactive oxygen species , microbiology and biotechnology , kinase , programmed cell death , biology , biochemistry , antioxidant , flavonoid
Hesperetin, a flavanone glycoside predominantly found in citrus fruits, exhibits a wide array of biological properties. In the present study hesperetin exhibited a significant cytotoxic effect in human breast carcinoma MCF‐7 cells in a concentration‐ and time‐dependent manner without affecting normal (HMEC) as well as immortalized normal mammary epithelial cells (MCF‐10A). The cytotoxic effect of hesperetin was due to the induction of apoptosis as evident from the phosphatidyl‐serine externalization, DNA fragmentation, caspase‐7 activation, and PARP cleavage. Apoptosis was associated with caspase‐9 activation, mitochondrial membrane potential loss, release of cytochrome c, and increase in Bax:Bcl‐2 ratio. Pre‐treatment with caspase‐9 specific inhibitor (Z‐LEHD‐fmk) markedly attenuated apoptosis suggesting an involvement of intrinsic mitochondrial apoptotic cascade. Further, DCFDA flow‐cytometric analysis revealed triggering of ROS in a time‐dependent manner. Pre‐treatment with ROS scavenger N‐acetylcysteine (NAC) and glutathione markedly abrogated hesperetin‐mediated apoptosis whereas carbonyl cyanide m‐chlorophenylhydrazone (CCCP) pretreatment along with DHR123‐based flow‐cytometry indicated the generation of cytosolic ROS. Profiling of MAPKs revealed activation of JNK upon hesperetin treatment which was abrogated upon NAC pre‐treatment. Additionally, inhibition of JNK by SP600125 significantly reversed hesperetin‐mediated apoptosis. The activation of JNK was associated with the activation of ASK1. Silencing of ASK1 resulted in significant attenuation of JNK activation as well as reversed the hesperetin‐mediated apoptosis suggesting that hesperetin‐mediated apoptosis of MCF‐7 cells involves accumulation of ROS and activation of ASK1/JNK pathway. In addition, hesperetin also induced apoptosis in triple negative breast cancer MDA‐MB‐231 cells via intrinsic pathway via activation of caspase ‐9 and ‐3 and increase in Bax:Bcl‐2 ratio. J. Cell. Physiol. 230: 1729–1739, 2015. © 2014 Wiley Periodicals, Inc.